Posted on

The First Flight of SpaceX’s Starship: A Leap Forward Despite Aborted Test

On April 20, 2023, the much-anticipated first test flight of SpaceX’s Starship ended abruptly. The 40-story tall spacecraft consumed itself in an orange and white fireball just four minutes after launch and 24 miles above the Gulf of Mexico off the coast of Texas.

This incident brought about a flurry of opinions, with some people hailing the attempt as a significant step in space exploration, while others criticized the failure. The FAA responded swiftly by temporarily grounding the entire Starship fleet, citing an “anomaly” that occurred during the ascent and prior to stage separation, leading to the loss of the vehicle.

Preliminary analysis suggested that out of the 33 engines powering the rocket’s first stage, at least eight failed to fire. This discrepancy led to the first stage’s failure to separate, causing the rocket to tumble uncontrollably for a full minute before the explosion. The explosion was the result of SpaceX’s “flight termination system” (FTS), a mechanism designed to prevent danger to people or structures on the ground in the event of such anomalies.

The incident wasn’t without collateral damage. The launch pad suffered serious damage, and buildings in Port Isabel, Texas, six miles from the launch site, reported shaking, shattered windows, and a rain of sandy debris.

However, the official cause of the incident is still under investigation. SpaceX and the FAA are working together to analyze the telemetry data and determine the root cause of the failure. This information is crucial for SpaceX’s future Starship launches, as it will help improve the vehicle’s reliability and safety, a top priority for both the company and the FAA.

The consequences for the next launch following the failed test flight of SpaceX’s Starship on April 20, 2023, can broadly be categorized into technical, regulatory, and operational perspectives.

  1. Technical Consequences: The primary cause of the failure was the malfunction of multiple engines during the flight. This indicates that SpaceX will need to conduct a thorough review of their engine designs, manufacturing processes, and quality checks to avoid similar issues in the future. The explosion also caused significant damage to the launch pad, which will need repairs and possibly upgrades to handle future launches.
  2. Regulatory Consequences: The Federal Aviation Administration (FAA) grounded the entire Starship fleet immediately after the incident. Before any future launches can take place, SpaceX will need to satisfy the FAA that their systems, processes, and procedures related to the mishap do not affect public safety.
  3. Operational Consequences: The failed test flight and subsequent grounding of the Starship fleet can potentially delay SpaceX’s ambitious timelines. SpaceX will need to work closely with regulators, conduct detailed investigations, and implement necessary corrections, all of which can take considerable time.

These consequences make it clear that SpaceX has a challenging path ahead to ensure the safe and successful launch of its next Starship. However, given SpaceX’s track record and the robustness of its engineering team, it is not unlikely that they will overcome these challenges and continue to push the boundaries of space exploration.


  • “What We Know About Why SpaceX’s Starship Rocket Failed” – Time.com.
  • “FAA, SpaceX investigating why Starship SN20 prototype exploded in Texas” – CNN.
Posted on

The Power Behind SpaceX Starship: Raptor Engines and The Future of Space Travel

The Starship, SpaceX’s latest offering in its fleet of spacecraft, is designed to be a fully reusable, two-stage vehicle powered by Raptor engines, and intended to replace the company’s current Falcon 9, Falcon Heavy, and Dragon 2 spacecraft. The Raptor engine, which SpaceX began developing even before 2014, is based on a full-flow staged combustion power cycle, burning liquid oxygen and liquid methane propellants. This is a marked departure from earlier engine designs, such as those used in Falcon 9, and it offers a plethora of benefits and innovations.

Raptor: A Game Changer

The Raptor’s full-flow staged combustion cycle is one of its defining characteristics. In this design, all propellants enter the combustion chamber in the gas phase, increasing the heat of combustion and the pressure inside the combustion chamber. This ensures that virtually all of the propellant is combusted and turned into thrust as efficiently as possible.

Another innovation in the Raptor is its use of liquid methane as a fuel. Methane is a cleaner-burning fuel than kerosene, which is used in many other rocket engines, reducing the amount of maintenance needed between flights. The use of liquid methane also aligns with SpaceX’s ambitions for Mars colonization, as it could potentially be sourced from the Martian atmosphere.

These design choices make the Raptor engine more efficient and powerful than previous engines, thus increasing the payload capacity of the Starship. The Starship’s payload range is estimated to be between 150-200 tonnes to low Earth orbit, a significant increase from the Falcon 9.

Competitors in the Horizon

While SpaceX’s Starship and its Raptor engines are groundbreaking, they are not without competition. Stoke Space, a Seattle startup, has recently announced plans to develop a rocket engine similar to the Raptor. Their proposed engine, also a full-flow staged combustion engine, is designed to be reusable and powered by liquid methane and liquid oxygen, much like the Raptor.

Stoke Space’s ambition, like SpaceX’s, is to make their first rocket fully reusable, and they have incorporated several exotic technologies into their design, which could potentially give them an edge in this highly competitive field. They aim to launch more than 1.65 tons into orbit for less than half a million dollars, an ambitious goal that reflects the competitive nature of the private space industry.

The Future of Engine Development

As we look forward, the development of rocket engines is likely to focus on efficiency, reusability, and cost-effectiveness. Both SpaceX and its competitors, such as Stoke Space, are aiming to develop engines that can be reused multiple times with minimal maintenance. This focus on reusability is crucial, as it drastically reduces the cost of space travel, making it more accessible.

Furthermore, there is a push towards developing engines that can handle more challenging propellants such as methane, which offer increased performance and the potential for in-situ resource utilization, especially on missions to Mars.

Given the high level of innovation and competition in the field, the future of rocket engine development looks promising, with SpaceX’s Raptor engines setting a high bar for others to follow.

Posted on

スペースX宇宙船打ち上げ 2023-04-20

SpaceX* スターシップ進水は困難に直面したときの回復力を示し、将来の成功への道を開く

2023年4月20日のスペースXスターシップの歴史的な打ち上げは、途中いくつかの困難はあったものの、宇宙探査における重要な一歩となった。第2段が計画通りに点火せず、ロケットの意図的な破壊につながったものの、このミッションはスペースXチームの回復力と適応力を証明するものとなった。この経験から学んだ教訓は、間違いなく将来の改善に貢献し、信頼性の高い効率的な宇宙旅行に近づくだろう。

スペースXスターシップ打ち上げ映像のスクリーンショット

生放送中に、33基のエンジンのうち5基が離陸直後に故障したことが明らかになった。

そのシュールな光景に触発され、私たちはこの歴史的な日を記念するジュエリーを作ることにした。

その結果、有名メーカーによる3Dプリント工程で個別に製作されたオブジェが出来上がる。価格は、サイズと選択した素材(スチール、スターリングシルバーチタン)によって決まります。さらに、「排気ノズル」に小さな宝石を付けることも可能です。カスタマイズの可能性については、お気軽にお問い合わせください。

この歴史的な打ち上げの詳細については、SpaceX のウェブサイトをご覧ください。

*免責事項:gekko, Gesellschaft für Kommunikation und Kooperation mbH、その子会社および関連会社は独立した事業体であり、SpaceXと提携、保証、契約を結んでいるわけではありません。SpaceXの製品やロゴは、純粋に識別を目的としたものであり、推奨や提携を意味するものではありません。gekkoが表明した意見、見解、声明はすべてgekko個人のものであり、SpaceXの見解や方針を代表するものではありません。gekkoが提供する情報はすべて一般的な情報提供のみを目的としたものであり、言及または議論される情報の完全性、正確性、信頼性、適合性に関していかなる表明または保証も行いません。すべての製品名、ロゴ、ブランドはそれぞれの所有者に帰属します。